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The original focus of this research involved very basic questions, such
as:

- What does the AVHRR '"greenness index'" (Normalized Difference Vegetation

Index, NDVI) actually represent?

- How do annual and monthly NDVI values compare with measured and modeled

biosphere phenomena such as primary productivity and standing biomass?
- What sort of fieldwork is needed? What other data?

- How can satellite data and modeling approaches be made mutually

compatible and complementary?
Some more advanced questions were also posed, for example:

- Can above-ground, satellite-sensed values be combined with modeling

results to estimate non-green and/or below-ground biomass components?

- How can satellite data and modeling techniques be combined for better,
perhaps self-correcting, more real-world estimates of biosphere patterns

(including changes in vegetation, carbon-balance components, etc.)?
Work was hampered by two unexpected problems at the University of Georgia:

1. an increase in teaching loads during the first two years of the grant

(1985-1987), to seven courses per year; and

2. a two-year collapse (on one month notice) in the ability to store
large data-sets on the UGa mainframe computer system (autumn 1985 to

summer 1987).
These problems resulted in funding for only two years instead of three, with
1986 funding carried over through 1987. Nevertheless, there were some

accomplishments, as described in the following sectionms.



Progress during 1985

First-year efforts (before the storage collapse) produced the following
results:

-~ a much improved world climatic data-base for modeling and predictive
mapping (more sites, better physiographic representation, etc.); from
this a larger, improved simulation of terrestrial biospheric carbon
balance (natural vegetation) was produced, for comparison with satellite

data (Box 1986). This data-base comprises 1600 sites (cf Box 1981).

- improvements in the individual process models (primary productivity,
decomposition, etc.) and the overall carbon-balance model (cf previous

item; see also Box 1978 and Box, in press).

- much improved interface software for mapping the simulation results,
conversion to NASA formats for color display at NASA-Goddard, and for

mapping at NASA-Goddard.
In addition, satellite data were combined with the global climatic and
simulation data to provide a first global data-base. Statistical analysis
of this data-base was begun, involving relationships between NDVI greenness
values and corresponding biomass, productivity, bioclimatic, and other
carbon balance data. Production of an initial series of monthly predictive

maps was precluded by the loss of computer storage space at Georgia.

Progress during 1986

As a result of the computing problems, mapping was shifted to NASA-Goddard
in 1986 and the initial approach involving pattern comparisons was modified
to a more statistical approach, involving geostatistical analysis within a
framework of bioclimatic-ecological regionalization. A major accomplishment
in 1986 was the expansion and improvement (re-evaluation of data, standardiza-
tion, etc.) of a global data-base of measurements of biomass and primary
production, to complement the simulation data. Once the unuseable NDVI

sites were removed (due to mixed pixels, coastal/island situations, etc.),



these data-bases involved abaut 1QQ valid measurement sites (with ahove-
ground and below-ground biomass and production) and 1021 simulation .
sites. Initial statistical results and scattergrams suggested strongest
NDVI relationships to net and gross primary productivity and relatively
little relationship to standing biomass amounts (due to the lack of a temporal
component in biomass comparable to annual/monthly sums of production). The
initial statistical results suggested that the accuracy of models which
might be developed for primary productivity, based on the NDVI, would be
about as accurate as the climate-based earlier models (r = about 0.80 for
global models). Since climate predicts the potential functions of a
"natural" biosphere and satellite data indicate functions of the vegetation
cover actually there, there seemed to be good potential for combining these

approaches for improved estimation of biosphere phenomena.

Progress during 1987

The main accomplishments during 1987 included the following:

- production of a new master tape with all environmental and satellite
data (annual and monthly) and model results for the 1600 sites, for
use in mapping and pattern comparison at NASA-Goddard. This represented

the newest version of the simulation model, as published (Box, in press).

- development of a complete mapping system as Goddard: base maps, projection
software, color and contouring schemes for the individual phenomena,
data-bases in Goddard formats, improvements in spatial interpolations,
etc. This was used for initial color maps comparing annual and monthly
patterns of the NDVI, actual evapotranspiration, net primary productivity,
gross primary productivity, and net ecosystem production (i.e. net CO2
flux between vegetation and atmosphere, cf. Tucker et al. 1986, Fung et

al. 1987).




- collection of still more biosphere measurements for eventual

improvement of the hiological models,

- development of some initial monthly models for primary productivity,

based on satellite data.
In addition, effects of different vegetation structures on model results
were studied (Box 1987), and several presentations of results were made
(see list of presentations, below). An initial summarizing manuscript was
drafted and submitted in early 1988 (Box et al., in review). Actual results

and implications are discussed below.

Results
One difference between the biosphere carbon-balance model used here
(Gillete and Box 1986; Box, in press) and other biosphere models involved

the question of significant CO, flux seasonality in the tropics (e.g.

2
Houghton 1987b). The simulated carbon balance for a tropical wet-dry
site 1s shown in Figure 1 and appears to be typical of a large area of so-
called tropical summer-rain climates (or Koppen's Aw climates). This
simulation result, with gross production (photosynthesis) essentially
shutting down during the long dry season (deciduous vegetation), with
respiration and decomposition continuing (at least somewhat), clearly
indicates a strong seasonal reversal in the net CO2 flux which has not been
predicted by others' models. Such a strong seasonal change in productivity
was clearly evident on the African savanna imagery of Tucker et al. (1985).
Another question in carbon-balance modeling involved the somewhat
unexpected model result showing a northward moving wave of net CO2 release

in springtime in the northern temperate zone, preceding the estahlishment

of strong growing-season CO, sinks in these areas (see Figure 2). It was

feared that this might be a modeling artifact, since the balance of separately



simulated processes could be rather sensitiye mathematically. Houghton
(1987a, 1987b), haweyer, has recently published results from just such a
situation (Brookhaven forest, on Long Island) which show an even larger

"spring puff" effect of CO, release than in the biosphere model. This

2
fortuitous publication of data strengthened confidence in the model by
showing that it is producing reasonable results even in a situation which
predictably might be one of the most sensitive.

As for the NDVI, initial correlation results suggested good relation-
ships to primary productivity but also to actual evapotranspiration (AET).
Since AET is more '"basic" than primary production (often being used as a
predictor of production), AET was used as the basis for an initial global
trend relationship with which to evaluate deviations caused by topography,
land use, vegetation effects, etc. (see Figure 3). In looking at the sites
in Figure 3, however, one can imagine easily that there may be at least two
distinct populations of points in the global data, one in the tropics and
one outside the tropics. This result was suggested also by the deviations
in different regions (see Box et al., in review). This problem cannot be
resolved at this time and requires further study.

Both the measurement and simulation data-bases were equipped (during

1987) with site codes describing the local topography, altitudinal belt,

and land use as well as vegetation structure, type, and seasonality (see Tables

1.and 2). These codes were used to study deviations from the global trend
and also appear on scattergrams, as a means of regionalizing the results.
The final relationship between the current GVI-product NDVI (Tarpley et al.
1984), as composited for this work by Brent Holben (NASA Goddard), and
site measurements of net primary production (both on an annual basis) is

shown in Figure 4, with vegetation symbolism derived from the site codes.



One can see that there is.a relatively good fit but with some scatter,

quite comparable to that on earlier scattergrams of net production versus

AET or other climatic variables (e.g. Lieth and Box 1972, Lieth 1975).

The vegetation symbolism, though; suggests one problem, namely that evergreen
needle-leaved forests and woodlands tend to show consistently higher green-
ness levels than might be expected from the productivity values. This
predictable result (Box 1984), however, seems to be the only case of
consistent bias based on vegetation structure in the current global data-base.
Simulated net primary productivity is plotted against NDVI (annual levels)

in Figure 5, which shows a similar relationship between the two variables
(but for 947 sites instead of 95). Annual gross primary productivity, as
estimated by a climate-based model (Lieth and Box 1977), showed a similar
saturation-like relationship to annual NDVI.

Correlation coefficients of the various biosphere variables versus
annually integrated NDVI are summarized in Table 3. As one can see, there
is little promising relationship between either biomass amounts or shoot-
root ratios on the one hand and annual NDVI on the other. (Monthly NDVI
values may show better relationships, but more bioclogical data are needed
in order to test this.) A scattergram of total standing biomass (above and
below ground) versus annual NDVI, with vegetation symbolism, is shown in
Figure 6.

Correlations between monthly values of AET, net productivity, and net
002 flux, on the one hand, versus monthly NDVI, are shown in Table 4. AET
and net productivity maintain some relationship to NDVI throughout the year,
but net CO, flux does not seem to be related to the NDVI in any consistent

2

geographic way. Even productive vegetation (e.g. late summer in a dry or



drying situation) can be greem hut be a net CO, source (i.e. have respiration

2
plus decomposition exceeding gross production). This was illustrated by a
color plate of North America (AET, NPP, CO2 flux, and NDVI for September)

in Box et al. (in review) but cannot be reproduced here.

Conclusions

1. NDVI values based on the current GVI product are not reliable in areas

of complex terrain (mixed pixels, such as high mountains or coastal

areas), at the low end of the NDVI scale (extreme deserts or winter snow
covers), or in irrigated areas in dry climates (artificial or natural,
e.g. river valleys). Current NDVI data seem to be reliable elsewhere, at
least for annually integrated totals. Use in irrigated areas may become
possible but requires separate calibration with the appropriate data.

2. Relative to the general global pattern (represented by a global
NDVI-AET "trend" curve), montane (not alpine) and temperate mesic wooded
sites tend to show higher annual NDVI values than comparable lowland and
tropical sites; non-wooded sites (except tropical savannas) generally show
elevated NDVI values relative to the global trend.

3. The NDVI seems most closely related to primary production (or j
productivity), both net and gross, with a predictive accuracy for annual
NPP comparable to that of climate-based NPP models. The NDVI-productivity
relationship appears to be consistent worldwide.

4. The NDVI is also closely related to actual evapotranspiration (AET),
corroborating earlier AET-based models of primary productivity. (Annual
NDVI seems statistically closer to AET-based estimates of annual NPP,
though, than to annual AET itself.)

S. There seems to be little reliable relationship between annually

integrated NDVI and biomass structure across different biomes.




6. Tall evergreen conifer forests do appear to have anomalously high NDVI
values in many cases. No other structure-based bias was consistently
evident. The apparent tropical/extra-tropical bias cannot be explained at
this time.

7. The high-latitude "terminator effect,"” due to low sun angles in
winter, does not seem to invalidate boreal and polar values of annually
integrated NDVI, which correspond to annual NPP and AET as well as do NDVI
totals from other biomes. Monthly NDVI values in high latitudes (except
well within the summer growing season) are less reliable, including a
one-month springtime disappearance at some sites which seems to be
unrelated to the terminator effect and which currently precludes NDVI
application to study springtime phenology in high latitudes.

8. Monthly NDVI, AET, and NPP do not appear to maintain c;nstant
proportional relationships to each other from month to month over a vear,
suggesting that monthly NDVI may improve current bioclimatic methods for
estimating seasonal production variations.

9. There seems to be little reliable relationship across different biomes
between NDVI and net ecosystem production (CO, flux), either annually or
monthly, due to seasonality effects and the sensitivity of the net C02

balance (equation 4).



Amravati, India (21°N, 78°E, 368m)
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Figure 1. Simulated Biosphere Carbon Balance for a
Highly Seasonal Tropical Site.
GPP = gross primary production (photosynthesis)
R = respiration (autotrophic)

NPAC = net primary carbon balance (= GPP - R), also called
net primary "production" when positive

DC
AC

decomposition of dead biomass

overall net carbon balance (= net ecosystem production)

The simulation is by the model MONTHLYC (Box, in press; see
also Gillette and Box 1986), using only mean monthly climatic
data as input. The individual processes are simulated by

globally developed, partially verified models or combinations
thereof.
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Abbreviations
Vegetation:
BL = broad-leaved EG = evergreen decid.
Seasonality:
E = evergreen S = semi-evergreen D = deciduous

Landscape types (vegetation structure/cover):

D = desert F = forest G = grassland
K = krummholz S = semi-desert T = tundra
W = woodland X = scrub

(Table 1

= deciduous

X = ephemeral

I = ice cap
V = savanna
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